

Division of labour in free & open
source software development:

the FreeBSD project

George N. Dafermos
g.n.dafermos@tudelft.nl
4th Oekonux Conference, Manchester University, March 29, 2009

Definition

The term free software and open source software
denotes computer software that is freely
distributed and made generally available under a
license (eg. GNU GPL) or institutional
arrangement (ie. public domain) giving users the
right to use, modify and re-distribute modified or
unmodified versions.

(very) brief
 timeline

1969 – Unix
1975 – Bill Joy arrives at Berkeley*, rewrites Unix
1980s: DARPA operating system (TCP/IP stack)
1982 – Bill Joy leaves
1990s – AT&T lawsuit (1992); 386BSD forks into
FreeBSD and NetBSD (1993) ; FreeBSD v.1.0 (Dec.
1993); FreeBSD v.2.0 (Jan. 1995)
2000s – FreeBSD most popular BSD-descendant

● Right to fork = Easy access to exit option
● Exit option dampens the emergence of conflicts
● Forking is an extreme example of the exit option
● Conflicts are usually translated into parallel

development lines
● Under which conditions does a project fork?

Forking

34 countries, 6 continents

international

age

Organisational structure

Of the 275 committers who made commits in 2002
● 102 kernel committers
● 99 userland committers
● 41 documentation committers
● 144 ports committers

How-to become a committer

“If you submit enough useful and correct problem
reports (PRs) [or patches] eventually some committer
will get sick of taking care of your work and will ask you
if you want to be able to commit them yourself”

(M. Lucas, 2002)

Organisational chart

Development tools

● CVS: revision control (primary)
● Perforce: revision control (support for highly-branched

development/new kernel development)
● GNATS: database maintenance (ie. problem-reports)
● Mailing lists: main communication channel

➔ About 70 public lists
➔ Plus some team-specific private lists: i) committers, ii) core team,

iii) Release Engineering Team, iv) Port Manager
● Tinderboxes: build process (doing a daily build is the key

coordinating mechanism)
● PGP: public-key cryptography
● To-do lists
● CVSup: distribution (164 servers in 50 countries in Feb. 2009)

Development process

After coding, ask for community review – test locally – commit to current
branch --> development release made twice a day available for
download – downloaded, tested and debugged – when stable, merged
by committer in stable (MFC) --> 'code slush', 'code freeze' - production
release (every 3 to 6 months)

average 96,2 days (1993-2003)

Division of labour

Division of labour is emergent: not dictated by the top but
premised on self-selection of tasks.

Is the immediate result of the usual procedure by which one joins a
project and advances from peripheral (yet necessary) activities
such as defect reporting and fixing to the development of new
functionality.

Participation asymmetry is explained by that participants
contribute according to their abilities.

1993-2003 (current branch, src)

334 individuals committed code

● Of them, 231 contributed 11,406 bug-fixes
● 329 contributed 516,540 changes for new
functionality
● 226 checked-in code to both fix bugs and
add new features
● Also, 5,645 individuals (of whom 183 are
committers) contributed 16,115 bug-reports

Task specialisation falls over time

*Liberos: committers who contribute both bug-fixes and new functionality

Is FOSS a clique?

Committers (current branch, src)

More and more committers join...

...but they seldom leave

Jan 2000 – Jan 2003
4 new committers per month

142 added, 24 removed

Code contributions
(current branch, src)

Average productivity
(code contributions per committer)

Top 15 committers (current branch, src)

Code contributions by top 15
committers Vs. all contributions

Comment on Brooks' Law

The increase of developers has not affected negatively
the productivity of high-contribution participants.

What accounts for this? The two-tier structure and
modularity? Not sufficiently (as dependencies among modules rise in

line with committers, ΔR2 = .438, F(1,278) = 217, p<.001).

Do they spend more time as the project unfolds?

Scale: codebase evolution
(current branch, src)

Scale: codebase evolution
(current branch, src)

The greater the size of the technology under
development the more developers will be
required to produce 80% of new functionality

Module maintainership
(Current branch, Feb. 2003)

● 18% of modules (125 of 716) have a maintainer
● 82% of modules (591 of 716) are maintainer-less, but 257
of them have a de-facto* maintainer
● So, 53% of modules (382 of 716) have a designated or de-
facto maintainer

*de-facto maintainer: >50% commits during last 12 months

Code ownership (Current branch, 2007)

● files with 1 committer: 31,831 = 47,4%
● files with 2 committers: 13,825 = 20,6%
● files with 3 committers: 5,577 = 8,3%
● files with >9 committers: 4,445 = 6,6%

Code checked-in by a committer can be easily modified by
others - Maintainers are recognised as experts on certain areas
of the code, for which they are responsible - Responsibility in
this case should not be confused with a mode of ownership
configured around the right to exclude.

Code leadership

In 13 yrs, of the 58 who populated the ranks of the ten
most productive committers:

one with 13 yrs (phk: Poul-Henning Kamp)
one with 11 yrs (peter: Peter Wemm)
one with 10 yrs (markm: Mark Murray)

average 3.5 yrs

Code leadership is distributed across different
groups of developers over time.

FreeBSD does not depend on a code god, but is driven
by different groups of developers over time: the
project 'regenerates' itself.

the end

Bibliography
T.T. Dinh-Trong and J.M. Bieman, 2005. The FreeBSD Project: A Replication Case
Study of Open Source Development, IEEE Transactions on Software Engineering, Vol.
31, No. 6, June, pp. 481-494.

N. Jørgensen, 2001. Putting it All in the Trunk: Incremental Software Development in the
FreeBSD Open Source Project, Information Systems Journal, Vol. 11, No. 4, pp. 321-
336, at http://webhotel.ruc.dk/nielsj//research/publications/freebsd.pdf.

N. Jørgensen, 2005. Incremental and Decentralized Integration in FreeBSD, in J. Feller,
B. Fitzgerald, S. Hissam & K. R. Lakhani (Eds.) Perspectives on Free and Open Source
Software, MIT Press, at http://mitpress.mit.edu/books/chapters/0262062461chap12.pdf

N. Saers, 2005. A project model for the FreeBSD Project, FreeBSD Project, at
http://niklas.saers.com/thesis/thesis.html.

D. Spinellis, 2006. Global software development in the FreeBSD project, in P. Kruchten
et al. (eds) International Workshop on Global Software Development for the Practitioner,
ACM Press, pp. 73–79, at
http://www.spinellis.gr/pubs/conf/2006-GSD-FreeBSD/html/GSD-FreeBSD.html

R. Watson, 2006. How the FreeBSD Project Works, Proceedings of EuroBSDCon, at
http://www.watson.org/~robert/freebsd/2006eurobsdcon/eurobsdcon2006-
howfreebsdworks.pdf.

http://webhotel.ruc.dk/nielsj//research/publications/freebsd.pdf
http://mitpress.mit.edu/books/chapters/0262062461chap12.pdf
http://niklas.saers.com/thesis/thesis.html
http://www.spinellis.gr/pubs/conf/2006-GSD-FreeBSD/html/GSD-FreeBSD.html

Credits
Ludo Gorzeman data-mining

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

